

Program : Diploma in Civil Engineering	
Course Code : 6012A	Course Title: Renewable Energy and Environment
Semester : 6	Credits: 4
Course Category: Program Elective	
Periods per week: 4 (L:3, T:1, P:0)	Periods per semester: 60

Course Objectives:

- Enable students to identify different available non-conventional energy sources, present and future scenario of world energy use
- Impart fundamental knowledge of Renewable Energy-(solar energy, wind energy, geo thermal and small hydro-power energy projects and its usage in different ways.
- Evaluate bio energy from various bio wastes.

Course Prerequisites:

Topic	Course code	Course name	Semester
Environmental science		Environmental science	2

Course Outcomes:

CO	Description	Duration (Hours)	Cognitive level
CO1	Identify present and future energy scenario of the world.	13	Understanding
CO2	Understand various methods of solar energy harvesting.	15	Understanding
CO3	Identify various wind energy systems, geo-thermal, small hydro-energy systems	15	Understanding
CO4	Evaluate appropriate methods for Bio energy generations from various Bio wastes.	15	Understanding

	Series Test	2	
--	-------------	---	--

CO – PO Mapping:

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1					3		
CO2					3		
CO3					3		
CO4					3		

3-Strongly mapped, 2-Moderately mapped, 1-Weakly mapped

Course Outline:

On completion of the course, the student will be able to:

Module Outcomes	Description	Duration (Hours)	Cognitive level
CO1	Understand present and future energy scenario of the world.		
M1.01	Understand World Energy Use; Reserves of Energy Resources; Environmental Aspects of Energy utilization.	4	Understanding
M1.02	Identify the Potentials of Renewable Energy Scenario in India and around the World	3	Understanding
M1.03	Summarize wind energy, solar, bio, thermal, small hydro-power energy projects.	3	Understanding
M1.04	Enlist the Achievements, Applications, Economics of renewable energy systems.	3	Understanding

Contents:

World Energy Use; Reserves of Energy Resources; Environmental Aspects of Energy utilization; Renewable Energy Scenario in India and around the World; An overview and brief description, including fundamentals, of the different renewable energy technologies, wind, solar, bioenergy, hydro, and geothermal energy. Potentials; Achievements / Applications; Economics of renewable energy systems.

CO2	Understand various methods of solar energy harvesting.		
M2.01	Define Solar Radiation	3	Understanding
M2.02	Explain Photovoltaic electric conversion.	4	Understanding
M2.03	Differentiate solar thermal and PV	4	Understanding
M2.04	Explain the Applications of solar energy	4	Understanding

	Series Test – I	1	
--	-----------------	---	--

Contents:

Solar energy classification schematic diagram, applications. Strength and weakness of PV system.

Similarities and differences between solar thermal and PV. Four different PV technologies in use today. - different services that solar thermal systems can provide. Rooftop solar PV power system, cost of solar energy systems.

CO3	Identify various wind energy systems, geo-thermal, small hydro-energy systems		
M3.01	Explain Wind Map of India: Wind Data and Energy Estimation	3	Understanding
M3.02	Outline the working of Wind turbine generators	4	Understanding
M3.03	Identify Tidal energy, Wave Energy, Small Hydro, Geothermal Energy.	4	Understanding
M3.04	Summarize the cost of the different technologies and common barriers and issues limiting widespread use/dissemination of renewable energy	4	Understanding

Contents:

Wind Map of India: Wind Data and Energy Estimation; Types of Wind Energy Systems; Performance; Site Selection. Details of Wind Turbine Generator; Safety and Environmental Aspects. advantages and disadvantages of wind energy technology. Key differences in the requirements for a wind pump for irrigation and a wind pump for water supply.

Other Renewable Energy Sources: Tidal energy; Wave Energy; Small Hydro and Geothermal Energy.

CO4	Evaluate appropriate methods for Bio energy generations from various Bio wastes.		
M4.01	Explain the applications of Bio energy	3	Understanding
M4.02	Outline the properties of solid, liquid and gaseous fuel for biomass power plants	4	Understanding
M4.03	Illustrate the layout of a Bio-chemical based and Thermo-chemical based power plants.	4	Understanding
M4.04	Illustrate the layout of Agro-chemical based power plant.	4	Understanding
	Series Test – II	1	

Contents:

Bio-Energy: Biomass direct combustion; Biomass gasifiers; Biogas plants; Digesters; Ethanol production; Bio diesel; Cogeneration; Biomass Applications. Layout of a Bio-chemical based (e.g. biogas) power plant, Thermo-chemical based (e.g. Municipal waste) power plant.

Agro-chemical based (e.g. bio-diesel) power plant Properties of solid fuel for biomass power

plants: bagasse, wood chips, rice husk, municipal waste. Properties of liquid and gaseous fuel for biomass power plants: Jatropha, bio-diesel gobar gas.

Text / Reference:

T/R	Book Title/Author
T1	O.P. Gupta, Energy Technology, Khanna Publishing House, Delhi (ed. 2018
T2	Renewable Energy Sources, Twidell, J.W. & Weir, A., EFN Spon Ltd., UK, 2006
T3	Solar Energy, Sukhatme. S.P., Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997
T4	Renewable Energy, Power for a Sustainable Future, Godfrey Boyle, Oxford University Press, U.K., 1996.
T5	Fundamental of Renewable Energy Sources, GN Tiwari and MK Ghoshal, Narosa, New Delhi, 2007.
T6	Renewable Energy and Environment-A Policy Analysis for India, NH Ravindranath, UK Rao, B Natarajan, P Monga, Tata McGraw Hill.
T7	Energy and The Environment, RA Ristinen and J J Kraushaar, Second Edition, John Willey & Sons, New York, 2006.
T8	Renewable Energy Resources, JW Twidell and AD Weir, ELBS, 2006.

Online Resources:

Sl.No	Website Link
1	International Energy Agency: www.iea.org
2	United Nations Development Programme - Energy: www.undp.org/energy
3	worldbank.org/energy
4	Renewable Energy Policy Network for the 21st Century: www.ren21.net
5	Danish Wind Industry Association: www.windpower.org/en/core.htm
6	Power website, international section: www.itpower.co.uk
7	Renewable Energy Case Studies: www.martinot.info/case_studies.htm Renewable Energy for rural schools, health clinics and water applicatin